Lancement de calcul sous CASTEP avec l'interface accelrys

Cliquer sur « File » puis « Import » :

puis choisir le fichier xx.cif à ouvrir :

Import Document					×
🔾 🗢 📔 🕨 Ordinateur	▶ Dat	ta (D:) → CASTEP → Test → optimisation →	- ↓	Rechercher dans : optin	nisation 🔎
Organiser 🔻 Nouveau de	ossier				
🗼 Téléchargements	*	Nom	Modifié le	Туре	Taille
Pik Kath à surse		🐌 KaAIF4_Files	28/10/2015 15:05	Dossier de fichiers	
		📊 KaAlF4.stp	28/10/2015 15:05	Materials Studio P	1 Ko
Documents	=	🔗 KaAlF4_tetra_16413.cif	18/03/2015 14:12	Crystallographic I	3 Ko
Vidéos					
· · · · · · · · · · · · · · · · · · ·					
🖳 Ordinateur					
🚢 OS (C:)					
👝 Data (D:)					
🖵 informatique (\\cemhti	+ -				•
Nom du	fichie	Ka AIEA tates 16412 aif	_	All Filer (* *)	_
<u>N</u> om du	neme	NaAIF4_LELIa_10415.CIT	•		
			Options	Ou <u>v</u> rir A	nnuler

Le fichier xx.xsd est automatiquement généré (dans l'exemple ci-dessus, KaAIF4_tetra_16413.xsd).

Il faut ensuite cliquer sur « Calculation » :

et choisir le type de calcul souhaité (dans notre exemple, une optimisation géométrique) ainsi que les fonctionnelles :

CASTEP Calculation						
Setup Electronic Properties Job Control						
Task: Geometry Op	Task: Geometry Optimization More					
Quality: Customized 💌						
Functional:	GGA 💌 PBE 💌					
🗆 Use TS 🖃	method for DFT-D correction					
🔲 Spin polarized	☑ Use formal spin as initial					
🗖 Use LDA+U	Initial spin: 0					
🥅 Metal	Charge: 0 •					
Run 👻 Files Help						

Cliquer ensuite sur « More »

La fenêtre qui s'ouvre permet de choisir les paramètres du déplacement ionique pour le calcul d'optimisation ionique

CASTEP Geometry Optimization					
Minimizer Options Stress					
Convergence tolerance					
Quality:	Ultra-fine	-			
Energy:	5,0e-6	eV/atom			
Max. force:	0,01	eV/Â			
Max. stress:	0,02	GPa			
Max. displacement:	5,0e-4	Å			
Max. iterations:	100 .				
Coptimize cell					
Basis set for Variable cell:					
Compressibility:	Hard 💌				
Help					

Il faut ensuite cliquer sur l'onglet « Electronique » de la fenêtre « CASTEP CALCULATION » :

CASTEP Calculation						
Setup Electronic Properties Job Control						
Energy cutoff: Customized 💌 370,0 eV						
SCF tolerance: Medium 💌						
Energy tolerances per: Atom						
k-point set: Medium 💌 1x1x1						
Pseudopotentials: Ultrasoft 🗨						
Pseudopotential representation:						
Use core hole						
More						
Run 👻 Files Help						

et cliquer sur « more » afin de fixer une énergie de cutoff, un maillage dans la zone de Brillouin, etc :

CASTEP Electronic Options						
Basis SCF k-points Potentials DFT-D						
I Use custom energy cutoff 370,0 eV						
FFT grid						
Density: Standard 🗨 90x90x90						
Augmentation density scaling factor: 1.0						
Finite basis correction						
Apply finite basis set correction: Smart						
Correction mode: Automatic 💌						
Numerical differentiation using 3 • points						
Energy derivative w.r.t. cutoff 0,0 eV						
Help						

L'onglet « Properties » de la fenêtre « CASTEP CALCULATION » permet de spécifier ce que nous souhaitons récupérer dans le fichier de sortie :

Dans l'exemple ci-dessous, « Population analysis » est choisie ce qui signifie que nous souhaitons récupérer le résultat de l'optimisation ionique dans les fichiers de sortie :

CASTEP Calculation					
Setup Electronic Properties Job Control					
Optical properties Orbitals Phonons					
Polarizability, IR and Raman spectra Population analysis Stress					
Density of states					
Empty bands: 12					
k-point set: Medium 💌 1x1x1					
Calculate PDOS More					
Run 🔻 Files Help					

L'onglet « Job Control » de la fenêtre « CASTEP CALCULATION » permet de spécifier ce que l'on souhaite favoriser : vitesse, mémoire, ... (plutôt choisir Speed)

CASTEP Calculation					
Setup Electronic Properties Job Control					
Gateway location: My Computer					
Queue:					
Job description: 🔽 Automatic					
Run in parallel on: 1 of 4 cores					
C Optimize number of cores on the fly					
Runtime optimization: Speed					
More					
Run 👻 Files Help					

Une fois tous les paramètres renseignés, nous allons générer le projet en cliquant sur « Files » puis « Save Files » :

Les fichiers du projet sont maintenant visibles :

Il reste maintenant à copier les fichiers ayant les extensions suivantes sur ARTEMIS :

*.param

*.xsd

*.cell

*.kptaux

*.trjaux

*.xms

Tous se trouvent sous le répertoire*- Calculation. Dans notre exemple, le fichier cif était sous :

D:\CASTEP\Test\optimisation

et les fichiers du projet ont été créés sous :

D:\CASTEP\Test\optimisation\KaAlF4_Files\Documents\KaAlF4_tetra_16413 CASTEP GeomOpt

Copier le script run_optim_geom.job et modifier SEEDNAME : lui donner le nom du fichier .xsd sans l'extension.

Une fois le job lancé, CASTEP écrit dans les fichiers suivants /scratch/votrelogin/n°job/*.castep

À la fin du calcul, ces fichiers sont copiés sous le répertoire result_jobID créé dans le répertoire contenant les fichiers initiaux du calcul ainsi que le script de lancement.

Lancer un calcul de RMN après une optimisation de structure

1°: Sur Artemis

 aller sous le répertoire contenant les dossiers et fichiers du calcul (~/moncalcul/result_idjob) et lancer castepclean.exe (installé dans /home/votrelogin/bin déclaré dans le PATH) : ça supprime tous les fichiers non nécessaires (*.pid, *.check,...)

2°: Rapatriement de result_jobid sur votre PC dans le répertoire contenant le projet (D:\CASTEP\Ba5AlF13_Files\Documents\Ba5AlF13_1_300ev_GeomOpt\BaAlF_GO_US_1_600eV_UF par exemple)

3° : Sous Material Studio

- cliquer sur les vagues et choisir analysis puis choisir Structure :

- Cliquer sur update pour charger la structure optimisée

puis sauvegarder cette nouvelle structure en tant que nouveau fichier de position en entrée de calcul.

Save As						×
OO- 🖉 « Do	cuments > Ba5AIF13_1_300ev_GeomOpt	► Ba	AIF_GO_US_1_600eV_UF result_104869	▼ \$ 1	Rechercher dans : result_	104869 🔎
Organiser 🔻 No	ouveau dossier				8== •	0
☆ Favoris		^	Nom	Modifié le	Туре	Taille
Emplacements	récents		🍇 neutron_F3_32e_P1_conf1_NMR.xsd	14/04/2015 22:53	Materials Studio 3	151
🔒 Téléchargeme	nts	-				
Bibliothèques		=				
Musique Vidéos						
🖳 Ordinateur						
🚢 OS (C:)						
Data (D:)	\\cempti_2) (Iv)	-	•			•
Nom du fichier :	neutron_F3_32e_P1_conf1_NMR_optimise	xsd				-
	Materials Studio 3D Atomistic Files (*.xsd)					•
Cacher les dossier	S			Options	Enregistrer	nuler

Pour relancer le calcul à partir de la structure optimisée, cliquer sur les vagues après avoir chargé le fichier xsd correspondant à la structure optimisée et choisir calculation

CASTEP Calculation						
Setup Electronic Properties Job Control						
Task: Geometry Op	Task: Geometry Optimization More					
Quality: Custon	nized 💌					
Functional:	GGA 💌 PBE 💌					
🗆 Use TS 🖃	method for DFT-D correction					
Spin polarized	☑ Use formal spin as initial					
🗖 Use LDA+U	Initial spin: 0					
Metal	Charge: 0					
Run	Files Help					

Les paramètres à choisir dans l'onglet Electronic

CASTEP Calculation					
Setup Electronic P	roperties Job Control				
Energy cutoff:	Customized 💌 600,0 eV				
SCF tolerance:	Ultra-fine 💌				
Energy tolerances per:	Atom				
k-point set:	Fine 1x1x1				
Pseudopotentials:	On the fly				
Pseudopotential representation:	Reciprocal space 💌				
Use core hole					
	More				
Run	Files Help				

Onglet Properties

CASTEP Calculation					
Setup Electronic Properties Job Control					
Electron density difference Electron localization function Electron localization function					
Optical properties Orbitals					
Nuclear magnetic resonance					
Calculate: Shielding and EFG 💌					
System type: Crystal					
Max. steps: 250 More					
Run 👻 Files Help					

Fenêtre optimisation ionique

CASTEP Geometry Optimization					
Minimizer Options Stress					
Convergence tolerance					
Quality:	Quality:				
Energy:	5,0e-6	eV/atom			
Max. force:	0,01	eV/Å			
Max. stress:	0,02	GPa			
Max. displacement:	5,0e-4	Å			
Max. iterations:	200 •				
C Optimize cell					
Basis set for variable cell:	Fixed Basis Qu	ality 👻			
Compressibility:	Hard				
Help					

Pour lancer un calcul de RMN, il faut modifier le fichier run_optim_geom.job (le script) :

▲ 123 -	run_optim_geom.job - WordPad	- O X
Accueil	Affichage	(P)
Couper	Courier New y 11 y Afric Hill Hand Hand Hand Hand Hand Hand Hand Hand	
Copier		
Coller	G I S abe ×₂ x² Z · A · = = = = = = mage Dessin Date et Insérer · Paint heure un obiet □ Sélectionner tout	
Presse-papiers	Police Paragraphe Insertion Édition	
	· X · · · 1 · · · · 2 · · · 3 · · · 4 · · · 5 · · · 6 · · · 7 · · · 8 · · · 9 · · · 10 · · · 11 · · · 12 · · · 13 · · · 14 · · · 15 · · · 16 · · · 17 · · · 18 · · · 19 · · · 20 · ·	
	<pre>#!/bin/bash # # In this script one comment before SBATCH is for enable option # # two comment before SBATCH is for disable option SEEDNAME=neutron_F3_32e_P1_conf1_NMR_optimise # Uncomment the line below to run NMR calculations # Other types of calculations can be run with the same syntax, # changing "_NMR" to "_DOS" for exemaple SEEDNAME2=\$SEEDNAME_NMR #****** OPTIONS TO CHANGE IN PRIORITY ****** # op to gravedef(_default); uplimited</pre>	E
	<pre># -p : queue - defg (default): unlimited # - express (15 min & 4 nodes max) # -n : processors (20 per node in defq and express) # -N : nodes # -t : walltime (format h:mm:ss): default is 12h #mem=<memory in="" megabytes=""> : 64 GB per node (3.2 GB per core) on defq #mem-per-cpu=2048M :3.2 GB per CPU on defq #exclusive : Job allocation can not share nodes with other running jobs</memory></pre>	
	<pre>#SBATCH -p defq #SBATCH -n 20 #SBATCH -N 1 #SBATCH -t 120:00:00 ##SBATCHmem=256000 ##SBATCHmem-per-cpu=2048M ##SBATCHexclusive</pre>	
	<pre>#****** OTHER (LESS-IMPORTANT OPTIONS TO CHANGE OPTIONALLY ******* # -J : job name #mail-type=ALL : Send mail: valid types are BEGIN, END, FAIL, REQUEUE, and ALL #mail-user=user@cnrs-orleans.fr #output slurm-%j.txt : Write stdout output, %j is replaced with the job number #error slurm-%j.txt : Write stderr output, %j is replaced with the job number # use same path name to write everything to one file #workdir=<directory> : Set the working directory of the batch script to directory before it is executed #exclusive</directory></pre>	
	100 % (-) -	