

Journée thématique calculs/simulations

Magnetic Resonance Imaging (IRM)

Maxime Yon

Vincent Sarou-Kanian Franck Fayon

cemht Magnetic resonance imaging

Introduction

a) Magnetic resonance imaging (MRI)

- No invasive, no ionizing, 1D, 2D and 3D imaging technic of complex objects
- > Based on magnetic resonance phenomenum
- ➤ Main part of the applications: imaging of ¹H of water
- ➤ The contrast are obtained by proton density difference or tissues rigidity difference

¹H MRI of water molecules of a corn cob by Andy Ellison

I) Principle

a) Magnetic resonance

- > Immerse in an intense magnetic field the magnetic moment of the nucleus: the spin rotate along the magnetic field
- > This magnetic component in rotation can be detect by induction in a coil placed around the object
- > This gives the nuclear magnetic resonance signal: the FID (Free Induction Decay)

I) Principle

b) NMR spectroscopy

- ➤ The spin resonance frequency depends of the magnetic field
- > The nucleus are shielded by the electron density
- The electron density is modified by the chemical environment

➤ The Fourier transform of the signal give the NMR spectrum

I) Principle

c) Magnetic Resonance Imaging (MRI)

- ➤ The spin resonance frequency depends of the magnetic field
- With the addition of a magnetic field gradient: the spin resonance frequency depends of the spin spatial position along the gradient
- The signal of the whole object is acquired and the Fourier transform give the 1D image (profile) of the spin density of the object

II) Spatial encoding

a) Frequency encoding

- Acquisition under gradient
- > Frequency dependent of spatial position
- > Fourier transform

Object profile in the gradient direction

II) Spatial encoding

- ➤ Incrementation of the phase as function as felt gradient and thus spatial position of each resonance
- > Fourier transform in the spatial dimension -> object profile

Cemht

II) Spatial encoding

c) Reciprocal space: K-space

- The combination of these two encoding allow the acquisition of multiple dimension images
- > The recorded data is the reciprocal space of an image: the K-space

III) Processing

c) Reciprocal space: K-space

> A Fourier transform in the two direction of this reciprocal space give the image

III) Processing

a) Matlab

- Import the NMR data
 fid=fopen(/mySERfile,'r','l');
 [data,~]=fread(fid,'int32');
- Cut them and arrange them to retrieve the reciprocal space data2D = reshape(data,TD2,TD1));
- Perform the double Fourier transform to obtain the image image = abs(fftshift(fft2(data2D)));
- Display the image imagesc(image)colormap gray

IV) Display

a) 3D display

- The result of a 3D acquisition and processing is a square matrix full of intensity point
- In order to display the surface of the 3D image, a cut off value is required

IV) Display

b) 3D display

➤ The Matlab display is also important to allows the user to see all the information in the 3D image

V) Reconstruction

a) Sparse sampling

- ➤ The reciprocal space of the image contain more signal in the center and redundant information
- ➤ It is possible to acquired only a part of it and then reconstruct the full K-space.
- This sampling reduce the experimental time recKspace=griddata(Xcoord,Ycoord, data,Xq,Yq,'cubic');

V) Reconstruction

c) Radial sampling

- The acquisition of the reciprocal space of the image can be perform by different trajectories
- ➤ The radial sampling allows to image a signal with a short life time

V) Reconstruction

b) Non Cartesian sampling

- After the acquisition a Cartesian map off points has to be computed before Fourier transform
- This can be done by interpolation recKspace=griddata(Xcoord,Ycoord, data,Xq,Yq,'cubic');
- Or by Fourier transform of the radius and Radon transform of the projections imageradon=iradon(projections,angle);

VI) Standalone Application

a) Application

- Sometime it is not convenient to open Matlab, just to display your data
- ➤ The Matlab compiler allows to execute all the treatments outside Matlab
- Your application will be able to run on any computer and be shared with users which do not possess Matlab

It is easy to create

cemht Magnetic resonance imaging

Conclusion

a) Magnetic resonance imaging (MRI)

- ➤ The Magnetic Resonance Imaging do not give directly images but spatially encoded data
- The image is obtain by Fourier transform of these data
- Matlab can be a valuable tool to :
 - Display the images
 - Create your own processing easily
 - Share this processing with everyone on any computer

Acknowledgments

Vincent Sarou-Kanian Franck Fayon Martine Decoville Ulrich Scheler Serge Birman Jean Claude Beloeil **Silvian Cadars Dominique Massiot**

Thank you for your attention

