

Calculs des déplacements chimiques RMN dans un bain de cryolite fondu en combinant simulation de dynamique moléculaire classique et calculs DFT

<u>Kelly MACHADO</u>, Didier ZANGHI, Vincent SAROU-KANIAN, Sylvian CADARS, Emmanuel VERON, Catherine BESSADA CEMHTI UPR3079 CNRS, Orléans

Coll. Mathieu SALANNE et Mario BURBANO, PHENIX (Paris)

Journée thématique calculs/simulations au CEMHTI – 1^{er} Décembre 2015

Electrolyse de l'Aluminium

 $\frac{1}{2}AI_{2}O_{3}(s) + \frac{3}{4}C(s) \rightarrow AI(l) + \frac{3}{4}CO_{2}(g)$ T ≈ 965 °C

> **Bain cryolitique:** Cryolithe fondue (Na_3AIF_6) Al_2O_3 dissoute Additifs LiF, AIF₃, CaF₂

Quelles espèces dans le bain? **Influence** de la température/composition? Données thermodynamiques ?

Structure et propriétés du bain ?

Spéciation dans le bain électrolytique

I. Nuta Inorg. Chem. 2011

² Madden et al. Chem. Soc. Rev. 1996

AlF₃, mol%

Dynamique Moléculaire

NaF-AlF₃ (50%-50% mol) 1030 °C

Simulation du liquide selon la composition/Température

Trajectoire atomique de chaque ion selon x, y, z d'une durée de 1 - 5 ns

Déduction des espèces anioniques présentes dans le bain

Grandeurs thermodynamiques (viscosité, conductivité électrique, densité)

Spéciation dans le bain électrolytique

Construction d'un potentiel d'interaction qui décrit le système NaF-AlF₃ de 0-50% AlF₃ à ≈ 1000°C

Démarche de la simulation

Démarche de la simulation

	Dynamique Classique PIM	Dynamique abinitio DFT
Particule élémentaire	Atome / Ion	Electron
Paramétrage / Approximations	 Potentiels d'interaction atomiques (par paires) Ajusté pour reproduire les forces entres atomes pour une série de systèmes connus -> spécifique d'un type de système 	 Fonctionnelles (GGA, LDA) Pseudopotentiels (par atome) -> Caractère Universel
Nombre typique d'atomes	≈10 ³ - 10 ⁶	≈ 500 - 1000
Durée de la dynamique	< 10 ⁻⁸ -10 ⁻⁷ s	< 10 ⁻¹² -10 ⁻¹¹ s
Propriétés	 Structure hors équilibre Structure Dynamique (longue): Conductivité ionique Viscosité Diffusion Vibration (IR) 	 Structure d' équilibre Dynamique (très rapide) Chemin réactionnel Propriétés électroniques: Conductivité électronique Réponse RMN

Dynamique moléculaire

Hypothèse: le mouvement des particules considérées obéit aux lois de la mécanique classique

► Les forces entre particules (loi de Newton $\sum \vec{F} = m\vec{a}$) permettent de déterminer l'évolution des vitesses → positions des atomes à un instant **t**

Potentiel PIM: Polarisable Ion Model [1]

Dynamique Moléculaire Classique

Dynamique moléculaire Classique

Caractéristiques des fichiers d'entrée

runtime.inpt : Conditions du calcul

potential.inpt : Paramètres du potentiel

restart.dat : Positions des atomes

Runtime.inpt

160000	Number of steps in the run.
1305 1	Translational temperature.
1 1	Number of ionic molecular units.
3	Number of ionic species.
120,20,60	Number of species of type 1.
-1.0,3.0,1.	.0 Permanent charge on ions.
18.9984,26	97,22.997 Atomic masses
.true.,.fa	lse.,.true. Polarizable ?
.talse.,.ta	alse.,.talse. Deformable ?
41.342	Timestep (a.u.).
dippim	Type of run (rim,dippim,quadpim)
epp	Type of run 2 (epp,cim,aim)
.Taise.	AIM effects on anion-anion interactions?
.true.	Like-like multipole damping?
false.	Invited Cluster:
false.	Environmental effects on ATM2
true	Conjugate gradient minimisation? (PTM)
1 0d-08	conjugate gradient infinitisation: (PIM)
1.0d-08	
false	Conjugate gradient minimisation? (ATM)
true.	Restart?
false.	Set up velocities?
.true.	velocity rescale prior to main run ?
.false.	Random displacement of ions.
.true.	Move ions?
.false.	Do a dynamical matrix calculation?
.false.	Relax input structure?
100	Number of steps inbetween periodic output (energies).
100	Number of steps inbetween periodic output (velocities etc).
100	Number of steps inbetween periodic output (frictions etc).
100	Number of steps inbetween periodic output (pressure etc).
50	Number of steps inbetween rdf call in main loop.
1	Number of ions to monitor.
1	Ion number to monitor. (1)
5.60d0	eta = <x>/boxlen.</x>
19.200	rcut (au).
1.00-/	convergence parameter
10.100	convergence ractor.
19.200	neut (du) Short Fange.
20000	Nose-noover chermoscal? (If true then enter a relaxation time)
false	Periodic rescale of temperature?
true	Tsotronic harostat?
20000	iboci opre bai obcac:
1.0d-8	
.false.	Anisotropic barostat?
.false.	Orthorhombic cell?

Démarche de la simulation

Calcul ab initio – DFT

VASP 5.3 : Vienna Ab initio Simulation Package

Logiciel qui utilise DFT pour résoudre le problème quantique pour les matériaux

Pour la cryolite 1440 électrons Durée de la DM: 200 fs

	Dynamique abinitio DFT	
Particule élémentaire	Electron	
Paramétrage / Approximations	 Fonctionnelles (GGA, LDA) Pseudopotentiels (par atome) -> Caractère Universel 	
Nombre typique d'atomes	≈ 500 - 1000	
Durée de la dynamique	< 10 ⁻¹² -10 ⁻¹¹ s	
Propriétés	 Structure d' équilibre Dynamique (très rapide) Chemin réactionnel Propriétés électroniques: Conductivité électronique Réponse RMN 	

Stratégie – calcul ab initio VASP

Etape préliminaire création de boites :

nombre d'atomes en fonction de la composition du système \approx 200 atomes (1400 – 1800 électrons)

I. Ajustement de Energie cut-off (ENMAX)

- II. Equilibration DM \longrightarrow calcul rapide 200 fs
- III. Single point Forces
- calcul précis sur 1 pas de temps
- IV. Single point Dipôle

Calcul ab initio – DFT

VASP 5.3 : Vienna Ab initio Simulation Package

Caractéristiques des fichiers d'entrée INCAR : Type de calcul et paramètres du calcul POSCAR : Positions initiales des atomes POTCAR : Pseudo-potentiels utilisés

<u>POTCAR</u> Pseudo potentiel pour chaque ion GGA/PBE

4				
	PAW_PBE	F	08Apr2002	
	7.00000	900	10000000	valence
	parameter	's	From PSCTR	are:
	VRHFIN	=F	: s2p5	
	LEXCH	Ξ.	PE	
	EATOM	=	659.6475	eV, 48.4827 Ry
	é	n	ergie pse	udo atome isolé
	TITEL	-	PAW_PBE F 0	8Apr2002
	LULTRA	=	F	use ultrasoft PP ?
	IUNSCR	=	1	unscreen: 0-lin 1-nonlin 2-no
	RPACOR	=	1.200	partial core radius
	POMASS	=	18.998; Z	VAL = 7.000 mass and valenz
	RCORE	=	1.520	outmost cutoff radius
	RWIGS	a,	1.500; R	VIGS = 0.794 wigner-seitz radius (au
	ENMAX	=	400.000; E	NMIN = 300.000 eV
	ICORE	=	2	local potentia <mark>l</mark>
	LCOR	=	Т	correct aug charges
	LPAW	=	Т	paw PP
	EAUG	=	613.614	
	RMAX	=	1.555	core radius for proj-oper
	RAUG	=	1.300	factor for augmentation sphere
	RDEP	=	1.539	radius for radial grids
	RDEPT	=	1.299	core radius for aug-charge
	Atomic	CO	nfiguration	

VASP

Caractéristiques des fichiers de sortie

- WAVECAR : Fonction d'onde
- OUTCAR : Convergence électronique et géométrique
- **XDATCAR** : Positions des atomes
- Fort.98 : Forces
- Fort.91 : Tenseur des contraintes
- Fort.95 : Dipôles

A)

VASP: Vienna Ab initio Simulation Package

INCAR

	_			
SYSTEM = NaF-Alf3		IStant Banamate	200	
<pre>!Start Parameters: !!NWRITE = 2 (Medium-level output info NWRITE = 0 (Low-level output informati TTTTTT - 4 (Devel evidence)</pre>	ormation) ion for MD)	!Start Paramete !!NWRITE = 2 NWRITE = 0	(Medium-level output information) (Low-level output information)	tion) for MD)
INTWAV = 1 (Readom initial wavefunction !ICORELEVEL = 1 (Print corelevels in OUTCA !!ICHARG = 11 (Non-selfconsistent: band s !!NELECT = 352 (Number of electrons: charg	n) on) AR) structures) ged cells)	ISTART = I INIWAV = 1 !ICORELEVEL =	(Random initial wavefunction) (Random initial wavefunction) '1' (Print CoreTevels in OUTCAR) (Non-selfconsistent: hand strue	ctures)
!NBANDS = 816 (Increase no. bands)		IINELECT = 353	Miscellaneous:	ccur cs)
<pre>!Parallel Options: !LPLANE = .TRUE. !NCORE = 12 number of cores per nodes (e.g. !NPAR = 12 !LSCALU = .FALSE. !NSIM = 1</pre>	. 4 or 8)	!NBANDS = 816	LORBIT = 11 (PAW radii for !!LORBIT = 1 (Supply radii : !!RWIGS = 1.5 1.5 (Radii for each !!LOPTICS = .TRUE. (Output OPTIC :	projected DOS) for projected DOS) h atomic species) file)
!Electronic Relaxation: !PREC = Normal (Precision level) PREC = Low (Precision level) LREAL = Auto (Projection operators: auto POPT = 15-04 15-04 15-04	omatic)	<pre>!PREC = Normal PREC = Low (Pre LREAL = Auto BOPT = 1E-04 1E-0</pre>	(Pr !!NEDOS = 1000 (Increase DOSC) !!LVTOT = .TRUE. (Electrostatic (P !!LFLF = TRUE (Localization.) 1 IVDW = 11	AR points) potential) function)
IALGO = FAST (Elect. algorithm: 38/48) ALGO = Very Fast (Elect. algorithm for MD) !ALGO = ALL (IALGO=58: Metals/Insulators f !ALGO = DAMPED (Dampen: IALGO=53: Metals/I) for HSE) Insulators for HSE)	!ALGO = FAST ALGO = Very Fast !ALGO = ALL (]	(Elect. algorithm: 38/48) (Elect. algorithm for MD) (ALGO=58: Metals/Insulators for HSE)	_
ENMAX = 400.00 eV (Plane-wave cutoff) NELM = 80 (Max number of SCF steps) !NELMIN = 4 (Min number of SCF steps) EDIFF = 1E-04 (SCF convergence)		IALGO = DAMPED ENMAX = 400.00 eV) (Dampen: IALGO=53; Metals/Insulators.fr / (Plane-wave cutoff) (Max Humber of SCF steps)	or HSE)
ISFIN = 1 (Closed Shell) !ISFIN = 2 (Spin polarized) GGA = PE (PBE exchange-correlation) ADDGRID = .TRUE. (Increase grid: helps GGA LASEN = TRUE (Mon-coherical alments: A	Lionic Relaxation:	EDIFF = 1E-04	(SCF convergence)	
EASPH = . IKOE. (Non-spherical elements:)	EDIFFG = -0.030	(Ionic convergence e	V/A)	
!Ionic Relaxation: EDIFFG = -0.030 (Ionic convergence eV/A) NSW = 100 (Max ionic steps) NBLOCK = 10 (Update XDATCAR/DOSCAR e	NSW = 100 () NBLOCK = 10 IPPION = 0	Max ionic steps) (Update XDATCAR/DO (Tops: 0-MD, 1-003	SCAR every X steps)	ence)
IBRION = 0 (Ions: 0-MD, 1-Quasi-New	ISIF = 2	(Stress/Relaxation	- 2-Tons 2-Shane/Tons/V 7-Vol)	
ISIF = 2 (Stress/Relaxation: 2-10 ISYM = 0 (Symmetry: Use all, 0: 1	ISYM = 0	(Symmetri Mole	cular Dynamics:	
!SYMPREC = 1E-05 (Symmetry: POSCAR precis	!SYMPREC = 1E-0	5 (Symmetr) POTI	M = 2.0 (Timestep fs)	
ISMEAR = 0 (Gaussian smearing, Meta	LCORR = F	(Add non MDAL	GO = 2 (NH thermostat, define SMASS)	
SMEAR = -1 (Fermi smearing)	ISMEAR = 0	(Gaussia IMDAI	LGO = 3 (NPT dynamics Parrinello-Rahma	n)
SIGMA = 0.01 (Smearing in eV, Metals	!SMEAR = -1	(Fermis !LANG	GEVIN_GAMMA = 75 55 45 75	-
Molecular Dynamics:	1115MEAK = -5	(Smeanin !LAN	GEVIN_GAMMA_L= 12	
POTIM = 2.0 (Timestep fs)	310MA = 0.01	(Silear III) PSTRI	ESS = 0 (external pressure)	
MDALGO = 2 (NH thermostat, define SMASS) MDALGO = 3 (NPT dynamics Parrinello-Rahman)		TEBEC	G = 1305 (Start temp K)	
!LANGEVIN_GAMMA = 75 55 45 75		TEENL SMAC	J = 2000 (End Lemp K) S = 1 (T scaling eveny NRLOCK stu	or in NH NVT)
<pre>!LANGEVIN_GAMMA_L= 12 PSTRESS = 0 (external pressure)</pre>		LISM.	ASS = 3 (Prod. MD run)	
TEBEG = 1305 (Start temp K)		1 PMA	55 = 400 (NPT ensemble)	
SMASS = 1 (T scaling every NBLOCK stps	in NH NVT)	MAXM	IX = 40	
!!SMASS = 3 (Prod. MD run)	-			
MAXMIX = 400 (NPT ensemble)	L Wannier90 interface			
L Wannier00 intenface	ILWANNIER90 = TRUE.			
!LWANNIER90 = .TRUE.	!LWANNIER90 RUN = .T	RUE.		
!LWANNIER90_RUN = .TRUE.	!LWRITE_MMN_AMN = .T	RUE.		P. 1
: CHILLE_MAN_ANN INVE.				

Obtention des Forces, Dipôles et Contraintes

Single Point

Forces et Contraintes

Relaxation électronique précision normal (PREC)

INCAR Convergence de la relaxation ionique plus petit (EDIFFG)

```
Electronic Relaxation:
PREC = Normal (Precision level)
!PREC = Low (Precision level)
LREAL = Auto (Projection operators: automatic)
ROPT = 1E-04 1E-04 1E-04 1E-04
ALGO = FAST
                  (Elect. algorithm: 38/48)
!ALGO = Very Fast (Elect. algorithm for MD)
         = ALL (IALGO=58: Metals/Insulators for HSE)
! ALGO
         = DAMPED (Dampen: IALGO=53: Metals/Insulators for HSE)
! ALGO
ENMAX = 600.00 ev (Plane-wave cutoff)
                   (Max number of SCF steps)
NELM = 200
                   (Min number of SCF steps)
!NELMIN = 4
EDIFF = 1E-05
                  (SCF convergence)
ISPIN =
                  (Closed shell)
                 (Spin polarized)
!ISPIN = 2
                  (PBE exchange-correlation)
      = PE
GGA
                  (Increase grid: helps GGA convergence)
ADDGRID = .TRUE.
                  (Non-spherical elements: PAW d/f convergence)
LASPH
        = .TRUE.
!Ionic Relaxation:
                  (Ionic convergence eV/A)
          -0.010
EDIFFG =
                  (Max ionic steps)
NSW
                .....(Update:XDATCAR/DOSCAR.every:X steps)
NBLOCK =
             10
                    (Ions: 0-MD, 1-Quasi-New, 2-CG)
              2
IBRION =
              2
                    (Stress/Relaxation: 2-Ions, 3-Shape/Ions/V, 7-Vol)
ISIF
                    (Symmetry: Use all, 0: none)
ISYM
              1
       =
              1E-05 (Symmetry: POSCAR precision)
SYMPREC =
                    (Add non-SCF force correction)
LCORR
              F
                    (Gaussian smearing, Metals:1, MP)
              0
ISMEAR =
                    (Fermi smearing)
             -1
!SMEAR =
                    (Tetrah. methd.smearing, Metals:1, MP)
!! ISMEAR =
             -5
                    (Smearing in eV. Metals:0.2)
              0.01
SIGMA
```


Obtention des Forces, Dipôles et Contraintes

Single Point

INCAR

- Forces et Contraintes
 - Relaxation électronique précision normal (PREC)

Convergence de la relaxation ionique plus petit (EDIFFG)

- Dipôles (Librairie Wannier)
 - Localisation des charges dans la fonction d'onde
 - Fonctions Wannier localisent les centres wannier (CW) qui représentent les électrons de la couche de valence
 - Dipôle = barycentre entre CW et la position du noyau

[1]

Ajustement du Potentiel

Programme fit multi paramètres: fortran^[1]

[1] Mathieu Salanne, Christian Simon, Mario Burbano, UPMC/PHENIX

Paramétrage du Potentiel

+ 28

NaF – AIF₃ -> 6 paires

fitabinitio.in

1.000

0.000

0.000

0.000

20.00

5.000

30.00

10.00

.10

.10

.10

.10

37 1606 0 1812 9 1.0d0	fi di qu f se) scal	t parame poles al. adrupole forces al. ets of st ling betw	ters 1 s 1: somme N ress tenso een multip	Jionstot or all poles and forces			
	F	Paramètres	val°	pas fit	val-	val+	
FF	1 2 3	A-1-1 B-1-1 C6FF	2.440 282.3 15.0	.00 .00 1.00	1.000 10.00 1.000	3.000 400.0 30.000	
	5	A-1-2	1.870	.00	0.010	3.000	
FAI	0 7 8	C6FA1 C8FA1	5.000 150.0	.00 .10 1.00	1.000	60.000 400.0	
FNa	10 11 12	B-1-3 C6FNa C8FNa	52.83 13.25 88.15	.00 1.00 1.00	1.000 0.010 50.00	200.0 60.00 400.0	
	13 14 15 16 17 18 19 20 21 22 23 24 24 25 26	A-2-2 B-2-2 C6A1A1 C8A1A1 A-2-3 B-2-3 C6A1Na C8A1Na A-3-3 B-3-3 C6NaNa C8NaNa ALPH1 ALPH3	5.000 1.000 5.000 150.0 5.000 1.000 150.0 5.000 1.000 11.70 51.80 7.885 0.991	.00 .00 .10 1.00 .00 .00 .10 1.00 .00 1.00 1.00 1.00 00	0.010 0.010 1.001 100.0 0.010 1.001 1.001 100.0 0.010 0.010 0.010 10.00 06.00 0.010	6.500 200.0 60.00 400.0 6.50 200.0 60.00 400.0 6.5 200.0 60.00 400.0 12.00	(
FF FAI FNa	27 28 29 30 31 32 33	BD-1-1 CD-1-1 BD-1-2 CD-1-2 BD-1-3 CD-1-3 CD-3-1	2.730 4.693 2.009 1.762 1.971 2.386 4.175	.10 .10 .10 .10 .10 .10 .10	0.010 0.001 0.010 0.010 0.010 0.010 0.010	10.00 5.000 5.000 5.000 5.000 5.000 10.00	

10.00

0.001

10.00

0.001

34

35

36

37

BD-3-2

BD-3-3

CD-3-3

3-2

NaF – AIF₃ – AI₂O₃ -> 10 paires

65	fi	t paramet	ers	(
7	di	poles all			0-1	0-0
0	qu	adrupoles				
1264	I	orces all	: somme	Nionstot	7	
1 0 - 1 0	se	ts of str	ess ten:	sor all	O-/	Al
1.040	SCal	ing betwe	en muit.	ipoles and lordes		
		Paramètres	val°	pas fit	Va.	O-Na
	1	A-1-1	2.406	.00	1.000	
	2	B-1-1	290.4	.00	1.000	
	3	C600	44.00	.00	1.000	100.0
	4	C800	853.0	.00	600.0	1000
	5	A-1-2	2.495	.10	1.000	200.0
	6	B-1-2	278.4	1.00	100.0	400.0
	7	C60F	28.20	1.00	1.000	60.00
	8	CSOF	391.7	1.00	100.0	500.0
	9	A-1-3	1.808	.10	0.010	9.500
	10	B-1-3	63.09	1.00	1.000	120.0
	11	C6OA1	2.000	1.00	0.010	10.00
	12	CSOA1	25.00	1.00	1.000	50.00
	13	A-1-4	2.166	.00	0.010	9.500
	14	B-1-4	221.5	.00	50.00	350.0
\	15	C60Na	2.000	1.00	0.010	10.00
	16	CSONa	25.00	1.00	1.000	50.00
/						
	41	ALPH1	10.74	.00	05.00	15.00
	44	BD-1-1	2.513	.10	0.010	10.00
	45	CD-1-1	2.227	.10	0.001	5.000
	46	BD-1-2	2.298	.10	0.010	5.000
	47	CD-1-2	2.821	-135	0.010	5.000
	48	BD-1-3	1.908		.010	5.000
	49	CD-1-3	1.627		1990	5.000
	50	BD-1-4	1.964			00
	51	CD-1-4	3.493	F-F		
	52	BD-2-1	5.000	AL F-AL		1
	53	CD-2-1	0.000	AI-AI AI-A	r-Na	
	60	CD-4-1	0.066	.10	Va-Na	0

Qualité de l'ajustement NaF-AlF₃

$$\chi^2_{Total} = \alpha X^2_{Forces} + \beta X^2_{Dipoles} + \gamma X^2_{Contraintes}$$

$$X_{i}^{2} = \frac{1}{N} \sum_{i} \frac{\left[x_{i}^{PIM} - x_{i}^{ai}\right]^{2}}{\left[x_{i}^{ai}\right]^{2}}, x = \text{Forces, Dipôles ou Contraintes}$$

α,β,γ

On cherche le jeu de paramètres minimisant l'écart quadratique moyen des forces, des dipôles et des contraintes (<5%)

Qualité de l'ajustement NaF-AlF₃

Démarche de la simulation

Calculs DFT des paramètres RMN - CASTEP

P. 25 Cadars S., Sarou-Kanian V., Salager E., Huyhn T.V., CEMHTI-CNRS, Université d Orléans **Calculs DFT des paramètres RMN - CASTEP**

Fichiers d'entrée pour CASTEP

<u>Paramètres</u>				
Fonctionnel	GGA/PBE			
E cutt off	600 eV			
k-point spacing	0.05 Å ⁻¹			
Grille point k	1 x 1 x 1			
Pseudo potentiel	On the fly			

Sans optimisation de la structure

$$_{9}F = 1s^{2} 2s^{2} 2p^{5}$$

 $_{13}AI = 1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{1}$
 $_{11}Na = 1s^{2} 2s^{2} 2p^{6} 3s^{1}$

Calculs DFT des paramètres RMN - CASTEP

Cadars S., Sarou-Kanian V., Salager E., Huyhn T.V., CEMHTI-CNRS, Université d Orléans

Calculs des paramètres RMN - CASTEP

Comparaison des Déplacements chimiques RMN (calculé et expérimentaux)

Comparaison des Déplacements chimiques RMN (calculé et expérimentaux)

Démarche de la simulation

Remerciements

Ces travaux sont financés dans le cadre de l' **ANR MIMINELA** (*Mécanismes Interfaciaux et Matériaux d'anodes INertes pour l'ELectrolyse de l'Aluminium*), porté par H.Roustand / ALUMINIUM PECHINEY ALUVAL (*PROGRAMME MATETPRO 2013*).

AGENCE NATIONALE DE LA RECHERC