

Complémentarité DRX-RMN-calculs DFT pour la résolution structurale.

CEMHTI & ILV

Journée thématique Calculs / simulations 1 décembre 2015

Décrire la Structure d'un matériau cristallin

Maille élémentaire Nature des Atomes Eléments de Symétrie

Crystal System	# of Bravais Lattices	# of Space Groups
Triclinic	1	2
Monoclinic	2	13
Orthorombic	4	59
Tetragonal	2	68
Rhombohedral	1	25
Hexagonal	1	27
Cubic	2	36
Total	14	230

Diffraction sur Monocristal

L. B. McCusker, ETH Zurich

- Désordre statique/dynamique

- Fluorures inorganiques
- Metal-Organic Frameworks (MOFs)

Calculs DFT dans les fluorures inorganiques

Effet de l'optimisation de géométrie

Déplacements Max pour les atomes de F (0.022 - 0.097 Å)

Valable lorsque les atomes sont situés sur les sites de bonne symétrie

Ba Al F Calc. ¹⁹F isotropic chemical shift (ppm) 50 0 -50 -100 -150 -100 -150 -50 50 0 Exp. 19F isotropic chemical shift (ppm)

Ba5AIF13

Isostructural de Sr₁₀Al₂F₂₅CI

diffraction sur poudre synchrotron et neutron

 $R_p = 6.07\%$, $R_{wp} = 8.93\%$ and $R_{Bragg} = 4.79\%$

Coll. F. Fayon, M. Allix

Ba5AIF13: RMN MAS 19F

4 sites cristallographiques F (positions 8a, 8a, 96e, 96e)

4 raies 19F, attribution partielle sur la base des intensités relatives et des corrélations 19F-19F

CASTEP: GO à partir du modèle synchrotron

CASTEP: GO à partir du modèle synchrotron

Problème sur F3

Ba5AIF13: désordre statique? dynamique?

Distances F3-F similaires aux autres distances F-F => 19F-19F DQ build doit être similaire

Build-up beaucoup plus long pour F3 ==> couplages dipolaires F3-F moyennés par le mouvement

- Fluorures inorganiques
- Metal-organic Frameworks (MOFs)

Metal-Organic Frameworks (MOFs)

UiO-66(Zr)

- Cluster 6 Zr
- Ligand terephthalate
- Cages tetra/octa
- S_{BET} 790 m².g⁻¹

Fonctionnalisation du ligand

UiO-66(Zr)-2COOH

Coll. C. Serre, G. Maurin

Validation du modèle en comparant calculs DFT et RMN

Calcul des déplacements chimiques 13C: CASTEP, fonctionnelle PBE, USPP

Très bon accord, même pour les fonctions COOH libres

Modifications locales de la structure: formation d'anhydrides

Crystal 09 with a full relaxation of the cell parameters for both forms

Modifications locales de la structure: formation d'anhydrides

RMN 27AI dans les MOFs

A520-Basolite

A520-sec

- Quantité d'eau max dans les pores
- Difficulté de vider complètement les pores
- Sensibilité des calculs de paramètres RMN aux liaisons-H
 - ==> comparaison DFT/exp. parfois difficile

Conclusions

Optimisations de structure et calculs de paramètres RMN

Permet de valider (ou non) un modèle structural

Difficultés liées à la présence d'eau dans les matériaux poreux

Remerciements

CEMHTI Franck Fayon, Mathieu Allix

ILV

Christian Serre, Thomas Devic, Patricia Horcajada les étudiants

ICG

Guillaume Maurin